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Abstract

In this paper, we prove the Heisenberg's inequality using the Fourier

transform. Then we show that the equality holds for the Gaussian and

the strict inequality holds for the function e−|t|.
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1 Fourier transform

De�nition 1. Let f ∈ L2(R) and t ∈ R. The Fourier transform of f(t) is
de�ned by

F [f(t); ω] = f̂(ω) = A

∫ +∞

−∞
e±iωtf(t) dt ω ∈ R (1)

and the inverse Fourier transform by

f(t) = B

∫ +∞

−∞
e∓iωtf̂(ω) dω t ∈ R (2)

where AB = 1
2π .

Remark 1.1. Since there are di�erent de�nitions of Fourier transform, in order
to include most of them, in (1) and (2) we have used the symbol ± and the
generic constants A and B, that can be chosen in three ways:

1. A = 1 and B = 1
2π

1



1 FOURIER TRANSFORM 2

2. A = B = 1√
2π

3. A = 1
2π and B = 1 .

As we will point out in the sequel, each choice of A and B is suitably adopted
in order to simplify some formulas.

We recall some properties of the Fourier transform that will be useful to
prove the Heisenberg's inequality.

Proposition 1.1. If f ∈ L2(R) then f̂ ∈ L2(R).

Theorem 1.1 (Convolution). Let f, g ∈ L2(R). We de�ne the convolution of
f and g as

(f ∗ g)(t) =
∫ +∞

−∞
f(τ)g(t− τ)dτ t ∈ R

Then

1. (f ∗ g)(t) ∈ L2(R)

2. F [(f ∗ g)(t); ω] = 1
A f̂(ω)ĝ(ω).

Remark 1.2. In this case we should choose A = 1, so the above equation
become

F [(f ∗ g)(t); ω] = f̂(ω)ĝ(ω).

The previous theorem is necessary to prove the next fundamental equality:

Theorem 1.2 (Parseval). Let f ∈ L2(R) and t ∈ R. Then

A

∫ +∞

−∞
|f(t)|2 dt = B

∫ +∞

−∞
|f̂(ω)|2 dω (3)

called Parseval's formula.

Remark 1.3. In this case we should choose A = B = 1√
2π
, so that (3) become∫ +∞

−∞
|f(t)|2 dt =

∫ +∞

−∞
|f̂(ω)|2 dω.

The above equation can be read as a preservation of the L2−norm: recalling
that

‖f‖2L2 = ‖f‖22 =

∫ +∞

−∞
|f(t)|2dt

we obtain that
‖f‖2 =

∥∥∥f̂∥∥∥
2
.

Remark 1.4. As a consequence of the Parseval's formula we �nd that

A

B

(∫ +∞

−∞
|f(t)|2 dt

)2

=
A

B

(
B

A

∫ +∞

−∞
|f̂(ω)|2 dω

)2

=
B

A

(∫ +∞

−∞
|f̂(ω)|2 dω

)2

(4)

Theorem 1.3 (Time di�erentiation). Let f ∈ L2(R) and t ∈ R. Then ∀n ∈ N

F

[
dnf

dtn
; ω

]
= (∓iω)n f̂(ω) (5)
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2 Heisenberg's inequality

The uncertainty principle is partly a description of a characteristic feature
of quantum mechanical system and partly a statement about the limitations of
one's ability to perform measurements on a system without disturbing it. When
translated into the language of quantum mechanics, it says that the values of a
pair of canonically conjugate observables such as position and momentum can-
not both be precisely determined in any quantum state. On the mathematical
side, when one asks for a precise quantitative formulation of the uncertainty
principle, the most common response is the following inequality, usually called
Heisenberg's inequality :

Theorem 2.1 (Heisenberg's inequality). If f , tf(t) and ωf̂(ω) ∈ L2(R) then(∫ +∞

−∞
t2|f(t)|2 dt

)(∫ +∞

−∞
ω2|f̂(ω)|2 dω

)
≥ A

4B

(∫ +∞

−∞
|f(t)|2 dt

)2

(6)

=
B

4A

(∫ +∞

−∞
|f̂(ω)|2 dω

)2

(7)

Proof. First we observe that, since f , tf(t) and ωf̂(ω) ∈ L2(R), then (6) is

well de�ned. Because f ∈ L2(R), from Proposition 1.1 also f̂ ∈ L2(R) and this
means that (7) is well de�ned too.

From (4) it follows immediately (7).

Let's now prove (6). Since (̂f ′)(ω) = ∓ωf̂(ω) from (5), the �niteness of∫
|ωf̂ |2 implies that f is absolutely continuous and f ′ ∈ L2(R). This allows us

to de�ne

I(λ) =

∫ +∞

−∞
|λtf(t) + f ′(t)|2 dt ≥ 0 λ ∈ R. (8)

In fact, because tf(t) and f ′(t) ∈ L2(R), also tf(t) + f ′(t) ∈ L2(R) and this

means that I(λ) <∞, so (8) is well de�ned. Since |f(t)|2 = f(t)f(t) and

|λtf(t) + f ′(t)|2 = [λtf(t) + f ′(t)]
[
λt f(t) + f ′(t)

]
= λ2t2 |f(t)|2 + λt

[
f(t)f ′(t) + f ′(t)f(t)

]
+ |f ′(t)|2

then we obtain

I(λ) = λ2
∫ +∞

−∞
t2 |f(t)|2 dt+ λ

∫ +∞

−∞
t
[
f(t)f ′(t) + f ′(t)f(t)

]
dt

+

∫ +∞

−∞
|f ′(t)|2 dt

and integrating by parts

I(λ) = λ2
∫ +∞

−∞
t2 |f(t)|2 dt+ lim

a→+∞
λ
∣∣∣t |f(t)|2∣∣∣a

−a
− λ

∫ +∞

−∞
|f(t)|2 dt

+

∫ +∞

−∞
|f ′(t)|2 dt.
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Since I(λ) < ∞ and all the integrals in the above expression are convergent,

then the second addend must be zero, for otherwise |f(t)|2 would be comparable
to t−1 for large t and f would not be in L2(R). Therefore

I(λ) = λ2
∫ +∞

−∞
t2 |f(t)|2 dt− λ

∫ +∞

−∞
|f(t)|2 dt+

∫ +∞

−∞
|f ′(t)|2 dt.

Since f ′ ∈ L2(R), we can apply (3) to f ′(t) and, using (5) with n = 1 , we �nd
that ∫ +∞

−∞
|f ′(t)|2 dt = B

A

∫ +∞

−∞

∣∣∣(̂f ′)(ω)∣∣∣2 dt = B

A

∫ +∞

−∞

∣∣∣∓iωf̂(ω)∣∣∣2 dt
=
B

A

∫ +∞

−∞
ω2
∣∣∣f̂(ω)∣∣∣2 dω,

so we obtain

I(λ) = λ2
∫ +∞

−∞
t2 |f(t)|2 dt− λ

∫ +∞

−∞
|f(t)|2 dt+ B

A

∫ +∞

−∞
ω2
∣∣∣f̂(ω)∣∣∣2 dω

that is a quadratic equation in λ. Since I(λ) ≥ 0 for any value of λ, its discrim-
inant must be nonpositive:(∫ +∞

−∞
t2 |f(t)|2 dt

)2

− 4
B

A

(∫ +∞

−∞
t2 |f(t)|2 dt

)(∫ +∞

−∞
ω2
∣∣∣f̂(ω)∣∣∣2 dω) ≤ 0

and �nally this leads to (6).

Remark 2.1. We can rewrite the Heisenberg's inequality in terms of the L2−norm:

‖tf(t)‖22
∥∥∥ωf̂(ω)∥∥∥2

2
≥ A

4B
‖f‖42 =

B

4A

∥∥∥f̂∥∥∥4
2
.

3 Examples

In this section we'll verify (6) and (7) for two special function: the Gaussian
and e−|t|.

3.1 Gaussian function

Let f(t) = e−α|t|
2

the Gaussian function; one can prove1 that f ∈ L2(R)
and

f̂(ω) = A

√
π

α
e−

ω2

4α .

1See Appendix A.1.
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One can prove2 that the integrals that appear in (6) are in this case

I1 =

∫ +∞

−∞
|f(t)|2 dt =

√
π

2α

I2 =

∫ +∞

−∞

∣∣∣f̂(ω)∣∣∣2 dω = A2π
3
2

√
2

α

I3 =

∫ +∞

−∞
t2 |f(t)|2 dt =

√
π

2
(2α)

− 3
2

I4 =

∫ +∞

−∞
ω2
∣∣∣f̂(ω)∣∣∣2 dω = A2π

3
2

√
2α

Moreover, using B = 1
2πA , we obtain

A

4B
(I1)

2 =
A

4B

π

2α
=
A2π2

4α

therefore

I3I4 =

[√
π

2
(2α)

− 3
2

] [
A2π

3
2

√
2α
]
=
A2π2

4α
=

A

4B
(I1)

2

so we have proved that (6) is an equality for the Gaussian. Furthermore, since

B

4A
(I2)

2 =
B

4A
A4π3 2

α
=
A2π2

4α
=

A

4B
(I1)

2

we have shown that also (7) holds for the Gaussian.

3.2 Exponential function

Let f(t) = e−|t| an exponential function; one can prove3 that f ∈ L2(R) and

f̂(ω) =
2A

1 + ω2
.

The integrals that appear in (6) are in this case4

I1 =

∫ +∞

−∞
|f(t)|2 dt = 1

I2 =

∫ +∞

−∞

∣∣∣f̂(ω)∣∣∣2 dω = 2πA2

I3 =

∫ +∞

−∞
t2 |f(t)|2 dt = 1

2

I4 =

∫ +∞

−∞
ω2
∣∣∣f̂(ω)∣∣∣2 dω = 2πA2.

2See Appendix A.1.
3See Appendix A.2.
4See Appendix A.2.
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Then we �nd that

I3I4 =
1

2
2πA2 = πA2 (9)

A

4B
(I1)

2 =
A

4B
=

2πA2

4
=
πA2

2
(10)

B

4A
(I2)

2 =
B

4A
(2πA2)2 = π2A3B =

π2A3

2πA
=
πA2

2
(11)

so we have proved that for the function e−|t| the left hand side in (6) is exactly
twice the right hand side and this means that in this case (6) is a strict inequality.
Finally, because we have shown

A

4B
(I1)

2 =
πA2

2
=

B

4A
(I2)

2

then (7) holds for the exponential.

A Appendix

In this appendix we give full proof of the results presented in the two previous
examples.

A.1 Gaussian function

Let f(t) = e−α|t|
2

the Gaussian function, with α > 0.

Lemma A.1. The Gauss integral is∫ +∞

−∞
e−α|t|

2

dt =

√
π

α
(12)

Proposition A.1. The following properties are valid: f ∈ L2(R) and

f̂(ω) = A

√
π

α
e−

ω2

4α . (13)

Proof. First we have to show that
∫ +∞
−∞ |f(t)|

2dt <∞, i.e. f ∈ L2(R):∫ +∞

−∞
|f(t)|2dt =

∫ +∞

−∞
|e−α|t|

2

|2dt =
∫ +∞

−∞
e−2α|t|

2

dt

=

√
π

2α
<∞,

where in the last equality we have applied (12).
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Since f ∈ L2(R), we can verify (13). Let ω ∈ R, then

f̂(ω) = A

∫ +∞

−∞
e±iωte−α|t|

2

dt = A

∫ +∞

−∞
e−α(t

2∓ iωα t) dt

= A

∫ +∞

−∞
e
−α

[
t2∓ iωα t+(

iω
2α )

2
]
+α( iω2α )

2

dt

= A

∫ +∞

−∞
e−α(t∓

iω
2α )

2−ω2

4α dt

= Ae−
ω2

4α

∫ +∞

−∞
e−αt

2

dt

= A

√
π

α
e−

ω2

4α

Proposition A.2.

I1 =

∫ +∞

−∞
|f(t)|2 dt =

√
π

2α
(14)

I2 =

∫ +∞

−∞

∣∣∣f̂(ω)∣∣∣2 dω = A2π
3
2

√
2

α
(15)

I3 =

∫ +∞

−∞
t2 |f(t)|2 dt =

√
π

2
(2α)

− 3
2 (16)

I4 =

∫ +∞

−∞
ω2
∣∣∣f̂(ω)∣∣∣2 dω = A2π

3
2

√
2α (17)

Proof. We have already proved (14) in Proposition A.1.
Let's show (15):

I2 =

∫ +∞

−∞

∣∣∣f̂(ω)∣∣∣2 dω
=

∫ +∞

−∞

∣∣∣∣A√π

α
e−

ω2

4α

∣∣∣∣2 dω
= A2 π

α

∫ +∞

−∞
e−

ω2

2α dω

= A2 π

α

√
2πα

= A2π
3
2

√
2

α
.
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Let's show (16):

I3 =

∫ +∞

−∞
t2|f(t)|2dt

=

∫ +∞

−∞
t2e−2αt

2

dt

= − 1

4α

∫ +∞

−∞
t
(
−4αte−2αt

2
)
dt

= − 1

4α

[∣∣∣te−2αt2∣∣∣+∞
−∞
−
∫ +∞

−∞
e−2αt

2

dt

]
=

(
− 1

4α

)(
0−

√
π

2α

)
=

√
π

2
(2α)

− 3
2 .

Finally we prove (17):

I4 =

∫ +∞

−∞
ω2
∣∣∣f̂(ω)∣∣∣2 dω

=

∫ +∞

−∞
ω2

∣∣∣∣A√π

α
e−

ω2

4α

∣∣∣∣2 dω
= A2 π

α

∫ +∞

−∞
ω2e−

ω2

2α dω

= A2 π

α

√
π

2
(2α)

3
2

= A2π
3
2

√
2α.

A.2 Exponential function

Let f(t) = e−|t| an exponential function.

Proposition A.3. The function f ∈ L2(R) and for ω ∈ R

f̂(ω) =
2A

1 + ω2
(18)

Proof. First we have to show that
∫ +∞
−∞ |f(t)|

2dt <∞, i.e. f ∈ L2(R):∫ +∞

−∞
|f(t)|2dt =

∫ +∞

−∞
|e−|t||2dt =

∫ +∞

−∞
e−2|t|dt

= 2

∫ +∞

0

e−2tdt = 2

∣∣∣∣e−2t−2
∣∣∣∣+∞
0

= 2[0 +
1

2
] = 1 <∞.
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Since f ∈ L2(R), we can verify (18). Let ω ∈ R, then

f̂(ω) = A

∫ +∞

−∞
e±iωte−|t| dt

= A

∫ 0

−∞
e±iωt+t dt+A

∫ +∞

0

e±iωt−t dt

= A

∫ 0

−∞
et(±iω+1) dt+A

∫ +∞

0

e−t(∓iω+1) dt

= A

∣∣∣∣et(±iω+1)

±iω + 1

∣∣∣∣0
−∞

+A

∣∣∣∣e−t(∓iω+1)

±iω − 1

∣∣∣∣+∞
0

= A
1

±iω + 1
−A 1

±iω − 1

= A
±iω − 1− (±iω + 1)

−ω2 − 1

= A
−2

−ω2 − 1

=
2A

1 + ω2

Proposition A.4.

I1 =

∫ +∞

−∞
|f(t)|2 dt = 1 (19)

I2 =

∫ +∞

−∞

∣∣∣f̂(ω)∣∣∣2 dω = 2πA2 (20)

I3 =

∫ +∞

−∞
t2 |f(t)|2 dt = 1

2
(21)

I4 =

∫ +∞

−∞
ω2
∣∣∣f̂(ω)∣∣∣2 dω = 2πA2. (22)

Proof. We have already proved (19) in Proposition A.3.
Let's show �rst (21).

I3 =

∫ +∞

−∞
t2|f(t)|2dt =

∫ +∞

−∞
t2e−2|t|dt

= 2

∫ +∞

0

t2e−2tdt =
∣∣−t2e−2t∣∣+∞

0
+

∫ +∞

0

2te−2tdt

= 0 +
∣∣−te−2t∣∣+∞

0
+

∫ +∞

0

e−2tdt

= 0 +

∣∣∣∣−e−2t2

∣∣∣∣+∞
0

=
1

2

We prove (20) using a consequence of the residue theorem.
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Proposition A.5. Assume f is an analytic function on C with a �nite number

of poles. Considering only the poles z1, z2, . . . , zn that are in the upper half

plane, then ∫ +∞

−∞
f(x)dx = 2πi

n∑
j=1

Res[f ; zj ] (23)

where Res[f ; zj ] is the residue of f in zj. Recall that, if zj is a pole of order m
for the function f , then

Res[f ; zj ] = lim
x→zj

1

(m− 1)!

dm−1

dxm−1
[(x− zj)mf(x)] (24)

De�ning

g(ω) =
∣∣∣f̂(ω)∣∣∣2 =

4A2

(1 + ω2)2
=

4A2

(ω + i)2(ω − i)2
,

we observe that there are two poles z1 = i and z2 = −i of order 2. For Theorem
A.5 we can consider only z1 ∈ C+. Let's compute Res[g; i], using (24):

Res[g; i] = lim
ω→i

d

dω
[(ω − i)2 4A2

(ω + i)2(ω − i)2
]

= 4A2 lim
ω→i

d

dω
[

1

(ω + i)2
]

= 4A2 lim
ω→i

[
−2(ω + i)−3

]
= 4A2[−2(2i)−3] = −A2i−3 = −iA2

so we have proved that Res[g; i] = −iA2. Using this result and (23) we obtain

I2 =

∫ +∞

−∞

∣∣∣f̂(ω)∣∣∣2 dω
=

∫ +∞

−∞

∣∣∣∣ 2A

1 + ω2

∣∣∣∣2 dω
=

∫ +∞

−∞

4A2

(1 + ω2)2
dω

= 2πiRes[g; i] = −2πA2i2 = 2πA2

Finally we prove (22) imitating the proof of (20). De�ning

h(ω) = ω2
∣∣∣f̂(ω)∣∣∣2 =

4A2ω2

(ω + i)2(ω − i)2
,

we observe that there are two poles z1 = i and z2 = −i of order 2. For Theorem
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A.5 we can consider only z1 ∈ C+. Let's compute Res[h; i]:

Res[h; i] = lim
ω→i

d

dω

[
(ω − i)2 4A2ω2

(ω + i)2(ω − i)2

]
= 4A2 lim

ω→i

d

dω

[
ω2

(ω + i)2

]
= 4A2 lim

ω→i

2ω(ω + i)2 − ω22(ω + i)

(ω + i)4

= 4A2 lim
ω→i

2ω(ω + i) [ω + i− ω]
(ω + i)4

= 4A2 lim
ω→i

2iω

(ω + i)3

= 4A2 2i2

(2i)3
= −4iA2

4
= −iA2

so we have proved that Res[h; i] = −iA2. Using this result and (23) we obtain

I4 =

∫ +∞

−∞

∣∣∣f̂(ω)∣∣∣2 dω
=

∫ +∞

−∞
ω2

∣∣∣∣ 2A

1 + ω2

∣∣∣∣2 dω
=

∫ +∞

−∞
ω2 4A2

(1 + ω2)2
dω

= 2πiRes[h; i] = −2πA2i2 = 2πA2

and this conclude our proof.
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